Wecome to HeBei ShengShi HongBang Cellulose Technology CO.,LTD.

  • fff1
  • fff2
  • fff3
  • fff4
  • Group 205.webp1
HeBei ShengShi HongBang Cellulose Technology CO.,LTD.
hpmc dextran hydroxypropyl methyl cellulose
hpmc dextran 70 hydroxypropyl methylcellulose
poda inayoweza kutawanywa tena

If you’ve ever tried to trowel a ceiling while the mix is racing ahead of you, you know the feeling: panic. That’s why a plaster retarder can be a genuine lifesaver on site. In fact, the right blend doesn’t just buy you time—it stabilizes workability so crews can finish cleanly, reduce waste, and hit spec without drama. Industry snapshot Gypsum-based products are booming with prefab panels, skim coats, machine-applied plasters, and fast-turn interiors. Contractors ask for predictable open time and smoother pumpability. Lately we’re seeing bio-based and low-odor chemistries, plus tighter QC aligned to ASTM/EN standards. It seems that brands able to tune set-time windows by application—board jointing vs. decorative moldings—are quietly winning bids. What the product is (and why it works) Gypsum retarder from HeBei ShengShi HongBang Cellulose Technology CO., LTD (Room 1904, Building B, Wanda Office Building, JiaoYu Road, Xinji City, Hebei Province) uses organic carboxylates and protein-modified actives to temporarily slow calcium sulfate hemihydrate hydration. In plain English: it gives you controllable working time without wrecking early strength—assuming, of course, you dose properly. Spec Typical value (≈; real-world use may vary) Form Free-flowing powder Dosage (on hemihydrate) 0.08–0.25% w/w Set-time extension From ~10 min to 35–90 min (ASTM C472/C266) Impact on strength @2h ±5% vs. control (proper dosing) pH (1% solution) 5.0–7.0 Shelf life 12 months, sealed, dry conditions Process flow, methods, and testing Materials : alpha/β-hemihydrate gypsum, water, cellulose ethers, dispersants, and a plaster retarder tailored to substrate and climate. Method : dry blend retarder into powder (preferred) or pre-dissolve in mix water; mix 2–3 minutes; check consistency. Verify set by Gillmore/Vicat needles (ASTM C266/C472) and conformity to EN 13279-1 categories. Service life of finished work is equivalent to control mixes when curing is correct. Industries : interior plastering, prefabricated moldings, gypsum blocks, machine-sprayed plasters, joint compounds, casting studios. Advantages: extended open time, smoother troweling, fewer cold joints, better pumpability, reduced rework. Usage scenarios: hot climates, large wall spans, intricate cornices where fast set ruins detail, or when batching is continuous. Vendor comparison (practitioner’s view) Vendor Certs Customization Lead time Notes HeBei ShengShi HongBang ISO 9001; RoHS-like screening Dosage/tuning by climate & substrate 7–14 days Strong tech support, consistent lots Global Vendor A ISO 9001/14001 Limited SKUs 10–21 days Stable but pricier Regional Vendor B Factory QC only On request 5–10 days Cost-effective; batch variation possible Customization and field cases Customization usually starts with base gypsum type and ambient temperature. Many customers say a plaster retarder tuned for summer cured their “flash set” headaches without over-watering the mix. Case 1 (MENA high-rise interiors) : Machine-sprayed plaster hitting initial set in ~12 min. With 0.15% additive, initial set moved to ~50 min; rework dropped ~30% and finish improved. Case 2 (Decorative casting) : Ornate cornices losing detail. At 0.10% dosage, open time rose to ~40 min, edge fidelity improved; compressive strength at 2 h within +3% of control (ASTM C472). Testing, certifications, and notes from site Tested per ASTM C472 and C266; conformity to EN 13279-1 categories on request. Typical lab data: control initial set 9–12 min; with 0.20% plaster retarder 60–75 min; water demand +1–2%. Storage: keep dry; reseal partial bags. Overdose? Expect slump loss/late strength dip—always run a trial batch. Certifications: ISO 9001 quality system maintained; safety data sheet available. References ASTM C472 – Standard Test Methods for Physical Testing of Gypsum, Gypsum Plasters and Gypsum Concrete. ASTM C266 – Standard Test Method for Time of Setting of Hydraulic-Cement Paste by Gillmore Needles (applicable to gypsum plasters). EN 13279-1 – Gypsum binders and gypsum plasters – Part 1: Definitions and requirements. ISO 9001 – Quality management systems – Requirements.

  • 40000tons
    Group_492

    Production

  • 20+years
    Group_493

    Experience

  • 5000+
    Group_494

    Acreage

Product Category
  • hpmc tile adhesive

    Gypsum retarder is an important construction additive, designed to extend the setting time of gypsum materials, thereby improving the operability of construction. This chemical is widely used in the construction industry, especially in projects requiring a long construction time, and plays a vital role. Due to the short setting time of traditional gypsum, it limits the large-scale and complex construction process, and after the addition of retarder, workers can more easily carry out fine construction and adjustment, ensuring the construction quality and efficiency. The main components of gypsum retarder can include a variety of organic and inorganic substances, such as sodium citrate, tartaric acid and so on. By reacting with dissolved components in gypsum, these substances delay the hydration reaction rate of gypsum, thus delaying the initial and final coagulation time. This delay does not affect the final strength of the plaster, ensuring the durability and stability of the finished product. In recent years, with the improvement of building technology and construction standards, the demand for gypsum retarder continues to grow. New environmentally friendly gypsum retardants are gradually favored by the market, and they use more green and sustainable formulations to reduce the negative impact on the environment. Manufacturers are focusing on the development of efficient and environmentally friendly retarders to meet the sustainable development needs of the modern construction industry. The application of gypsum retarder is very wide, including wall plastering, ceiling, decorative modeling and so on. It ensures the flexibility of construction operation without affecting the physical properties and aesthetics of the finished product. This makes the chemical one of the indispensable materials in modern construction. In general, gypsum retarder as a chemical additive to improve construction convenience and operability, promote the technical progress of the construction industry, while catering to the trend of sustainable development, the future market potential can not be underestimated.

  • does wood contain cellulose

    Understanding Methyl Cellulose and Its Pricing Dynamics Methyl cellulose, a water-soluble polymer derived from cellulose, has garnered increasing attention in various industries due to its versatile properties. As a key ingredient in food, pharmaceuticals, cosmetics, and construction, methyl cellulose plays a significant role in enhancing the quality and functionality of many products. However, the pricing aspects of methyl cellulose often raise questions among manufacturers and consumers alike. This article delves into the factors influencing the price of methyl cellulose, its applications, and the market trends that shape its economics. What is Methyl Cellulose? Methyl cellulose is produced through the methylation of cellulose, which is a natural polymer obtained from plant cell walls, particularly from wood and cotton. This modification process endows methyl cellulose with unique properties such as high viscosity, gelling ability, and water retention. Because of these characteristics, it acts as a thickener, emulsifier, and stabilizer, making it a popular choice in various applications. Applications of Methyl Cellulose 1. Food Industry Methyl cellulose is commonly used in the food industry as a thickening agent and a fat replacer. It helps improve the texture and stability of food products like sauces, dressings, and baked goods. Additionally, its ability to form gels at elevated temperatures is exploited in vegetarian and vegan food substitutes. 2. Pharmaceuticals In the pharmaceutical sector, methyl cellulose serves as an effective binder, coating, and disintegrant in tablet formulations. Its water-retaining properties are also valuable in the production of ocular solutions and laxatives. 3. Cosmetics Methyl cellulose is utilized in various cosmetic products for its thickening and stabilizing properties. It can be found in shampoos, lotions, and creams, contributing to the desired texture and overall feel of these products. 4. Construction The construction industry employs methyl cellulose as an additive in tile adhesives, joint compounds, and plaster. Its water retention and improved workability aid in creating durable and effective building materials. Factors Influencing the Price of Methyl Cellulose harga metilselulosa The pricing of methyl cellulose is influenced by several key factors, including 1. Raw Material Costs The primary raw materials for cellulose-based products, including cotton and wood pulp, can experience price fluctuations based on supply and demand dynamics. In addition, any changes to regulations affecting sustainable sourcing can also impact raw material costs. 2. Production Processes The manufacturing processes involved in producing methyl cellulose can be complex and energy-intensive. Advances in production technology can potentially reduce costs, but any disruptions—such as maintenance issues or the introduction of new regulations—can affect pricing. 3. Market Demand The growth of industries utilizing methyl cellulose directly impacts its demand. For instance, the rising popularity of plant-based food products has significantly increased the use of methyl cellulose as a vegan binder in food processing, contributing to fluctuating prices. 4. Geopolitical Factors International trade agreements, tariffs, and political stability in regions producing cellulose can affect the global supply chain, impacting both availability and pricing of methyl cellulose. For example, disruptions in trade can lead to supply shortages, subsequently driving up prices. 5. Technological Innovations As research advances, new grades and formulations of methyl cellulose are developed, often commanding different price points. Innovations that enhance performance or functionality can justify higher costs, while more efficient production methods can lower them. Market Trends and Future Outlook The methyl cellulose market is poised for growth, driven by expanding applications across various sectors. The trend toward clean label products in the food industry, coupled with an increasing preference for natural and plant-based ingredients, is likely to sustain demand for methyl cellulose. Additionally, advancements in production technology and heightened environmental awareness may foster more sustainable practices within the industry, influencing pricing trends. In conclusion, methyl cellulose plays an invaluable role across numerous industries. Understanding the factors that contribute to its pricing can help stakeholders make informed decisions. As demand for this versatile polymer continues to grow, staying attuned to market trends and shifts will be essential for navigating the complexities of methyl cellulose pricing.

Get Free Quote or Can call us At Our Emergency Services

+86-131-8048-6930

Our Advantage
We have three
advantages
  • Group_497

    200000 Viscosities

    Excellent product

    We can produce pure products up to 200,000 viscosities

  • Group_496

    40000 tons

    High yield

    We don’t stop production all year round, and the annual output can reach 40,000 tons

  • Frame

    24 hours

    Quality service

    We provide 24-hours online reception service, welcome to consult at any time

———— Inquiry Form

Schedule A services


If you are interested in our products, you can choose to leave your information here, and we will be in touch with you shortly.


TOP